

Securing Scale-up Funding for Alternative Proteins

Securing Scale-up Funding for Alternative Proteins

Ambitious Impact Research Report

August 2025

Securing Scale-up Funding for Alternative Proteins

August 2025

Contributions: The primary author for this report was Stuart Craig (Research Fellow), supported by Vicky Cox (Senior Research Manager). We are grateful to the experts who took time to share their views with us.

Ambitious Impact (AIM) exists to enable more effective charities to exist worldwide. We strive to achieve this goal through our extensive research process and Incubator Program. We give talented potential entrepreneurs two months of cost-covered, intensive training designed by founders for founders. Our talented researchers and entrepreneurs identify evidence-based, high-impact interventions and help founders find a co-founder to launch the idea and reach scale.

Note to readers: Our research is geared toward AIM decision-makers and program participants. We attempt to find the best ideas for our incubation programs through these reports. Given our commitment to focusing on recommended ideas, reports on those not recommended for incubation can often be less polished.

For questions about the research, please contact Morgan Fairless at morgan@charityentrepreneurship.com.

Citation: Craig, S., & Cox, V. (2025). Securing Scale-up Funding for Alternative Proteins. Ambitious Impact. https://doi.org/10.5281/zenodo.16564593

Securing Scale-up Funding for Alternative Proteins / Summary

Description

We review a charity idea to lobby governments to introduce financial tools (like loan guarantees) to help alternative protein companies scale production. High capital costs block the expansion of alternative proteins, despite the strong potential for climate and animal welfare impact. Drawing lessons from industries like clean energy, the charity would push for policies that reduce investment risk and unlock private capital.

Counterfactual impact

The intervention is modeled as averting 3–51 Suffering-Adjusted Days (SADs) per dollar and reducing CO₂ equivalent emissions for \$0.54-\$10.17 per tonne.

Scale this charity could reach

If successful, the charity could catalyze millions in government investment in a single country. Based on the size of previous infrastructure grants, we think that a new charity could raise \$2M-14M per year per country.

Potential for success

Robustness of evidence

Historical examples from clean energy and biotech show that government financial tools can transform emerging industries. The experts we spoke with largely agreed this could apply to alternative proteins, noting some caution that policy wins alone may not guarantee private investment flows. The Good Food Institute (GFI) has also been successful in lobbying governments to secure R&D funding.

Others have estimated that for each dollar spent, GFI raised \$1.67 in funding. We expect that a new charity could see similar success for scale-up funding. However, we note that scale-up funding has been historically underinvested in compared to R&D funding. 16 grants have been made across eight countries for scale-up funding vs. 336 grants made across 28 countries for R&D.

Theory of Change

A new non-profit will identify policy opportunities, engage decision-makers, and advocate for financial support measures. This work relies on the assumption that governments are open to the economic, national security, sustainability, and food security arguments for alt proteins, and that modest advocacy costs could unlock substantial funding. The experts we spoke with think that a new charity could achieve this.

Neglectedness

The focus on scaling support for alternative proteins is highly neglected. GFI only has two FTE working on securing government commercialization funding. This leaves room for new actors to add significant value. Experts from GFI and Food Solutions Action believe that work alongside them would be synergistic with their efforts lobbying for financial incentives for R&D.

Geographic assessment

Top opportunities lie in the US, Canada, and the UK, where markets are large, political climates are supportive, and government interest in food innovation is strong. However, efforts would require local expertise and networks. China, the Netherlands, Germany, and Singapore would also be interesting locations for this intervention.

Relevance

Strategic value to AIM

This would be our first recommendation in alternative proteins that could bring in counterfactual talent that would not have otherwise applied to the program, and help us identify other opportunities in the space.

Fit for the CEIP

This is suitable for founders interested in policy, where success depends on skills in political navigation and relationship-building. The risk of harm is low, but political access remains a significant barrier for newcomers.

Other

Expert views

Experts saw high potential and agreed that scale-up funding is a critical gap. Their views differed on tractability. Some expected progress due to existing political interest, while others emphasized challenges in gaining access and influencing policy. Founders will need strategic messaging and perseverance, particularly in markets like the US, where national security and economic competitiveness frames are key. All the experts we spoke with were very supportive of a new organization focused on securing scale-up funding.

Implementation factors

We expect access to stakeholders to be the most significant implementation concern for this intervention. Success in this intervention depends heavily on building relationships with government decision-makers and influential allies. Gaining meetings with senior policymakers, securing warm introductions, and building credibility within government circles are all essential for moving financial policy recommendations forward. Without existing networks or institutional backing, a poorly financed newcomer may struggle to gain initial traction, particularly in jurisdictions where gatekeeping is strong or where alternative proteins are not yet seen as a priority. These implementation concerns could be offset by a strong founding team and geographic prioritization, particularly if this team has local policy experience and existing connections.

Securing Scale-up Funding for Alternative Proteins /

Crucial considerations

Suitability for an AIM-incubated organization

Experts broadly agreed that this intervention is suitable for an AIM-incubated charity and aligned strongly with AIM's goals to reduce animal suffering and mitigate climate change. However, both experts and the research team suggest that this work requires engagement with large-scale financial mechanisms and high-level government processes, which could demand a more specialized founder skill set than AIM's usual model. Navigating complex legislative environments, understanding financial instruments, and building trust with influential policymakers may prove challenging for new founders without prior policy or political experience. However, the intervention remains attractive due to its potential to unlock significant resources and achieve outsized impact if successful.

Scale of government investment required to have a meaningful impact

A central uncertainty is the magnitude of government investment needed to meaningfully shift the scale-up bottleneck. Historical examples from clean energy and biotech suggest that large, transformative jumps in production often depend on public investments well beyond typical grant sizes, sometimes in the hundreds of millions of dollars. While there is growing interest among governments in supporting food innovation, the average infrastructure investments currently allocated to alt proteins appear modest compared to what may be required to significantly reduce production costs and accelerate market competitiveness. This scale may be out of reach for a smaller organization, especially given the political competition for large funding allocations. There's also uncertainty about how to quantify the minimum investment needed to unlock meaningful change in the alt protein sector, which could hinder planning and fundraising for advocacy efforts.

GFI estimates that capital expenditure (CapEx) needed to build (self-owned) commercial alternative protein facilities is between \$15-250 million. Previous government infrastructure grants have averaged \$14.1M (\$2-73.8M, see here). This suggests that government grants are likely a helpful adjunct to scaling alternative protein but may not be transformative on their own unless larger investments are achieved through either private or public finance. There may also be ways to reduce the CapEx requirements, for example, GFI estimates that co-manufacturing (instead of building a new, self-owned facility) may only require \$5-50 million.

A Global Innovation Needs Assessment estimates that to "unlock the full benefits of alternative proteins" global public spending on R&D and commercialization needs to increase to at least \$4.4B and \$5.7B per year, respectively. This not only shows how commercialization funding is underinvested in currently, but also illustrates the large amount of funding needed to allow alt proteins to really displace animal products.

Political tractability and barriers to influence

We expect that political tractability varies across countries, with some countries opposed to alternative protein and even taking steps to ban it. However, we think that strong target country prioritization could avoid the least tractable countries.

However, even in more supportive countries political tractability is mixed. On one hand, alternative proteins strongly align with government goals related to economic growth, national

security, sustainability, and food security, offering a compelling narrative to policymakers. On the other hand, achieving large-scale financial policy change is politically complex. It requires understanding legislative processes, identifying political windows, and building bipartisan support, especially in environments like the U.S., where political polarization can stall policy momentum. Experts highlighted that access to stakeholders is the single largest barrier, as policymakers often prioritize engagement with actors who have existing political influence, networks, or significant lobbying resources. Moreover, while governments express support for alt proteins, translating this into concrete financial commitments is far from guaranteed, particularly given competing budgetary priorities and ideological skepticism about public support for private industries. For a new organization, this means progress could be slow and highly dependent on founders' ability to quickly establish credibility and relationships in political circles.

Table of contents

1	Background	8
	1.1 Context	8
	1.2 Introduction to the idea and problem	8
2	Theory of change	10
3	Quality of evidence	14
	3.1 Evidence that a charity can make change in this space	14
	3.2 Evidence that alternative protein adoption has the expected benefits	21
4	Expert views	24
	Need for scale-up funding	25
	Framing	25
	Founder profiles	26
	Relationship between R&D and scale-up funding	26
	Private investment	27
5	Additionality and geographic assessment	28
	5.1 Neglectedness	28
	5.2 Geographic assessment	29
6	Cost-effectiveness analysis	33
	6.1 Results	33
7	Implementation	37
	7.1 What does working on this idea look like?	37
	7.2 Key factors	40
8	Conclusion	45
Re	eferences	46

1 Background

1.1 Context

Ambitious Impact (AIM) exists to increase the number and quality of effective non-profits working to improve human and animal wellbeing. AIM connects talented individuals with high-impact ideas. We give potential entrepreneurs intensive training and ongoing support to launch ideas to scale. Our research team focuses on finding impactful opportunities.

As part of our 2025 research agenda, we reviewed climate co-benefits as a cause area. In that context, we researched securing scale-up funding for the alternative protein industry. This report provides an overview of our findings.

1.2 Introduction to the idea and problem

Key definitions

Alternative proteins are food products that can complement or replace conventional animal-based proteins. These include:

- Plant-based proteins, typically derived from soy, pea, wheat, or other crops.
- **Fermentation-based proteins**, including biomass fermentation and precision fermentation.
- Cultivated (or cell-based) meat, grown from animal cells in bioreactors without the need to raise and slaughter animals.

Loan guarantees are government-backed commitments to repay a loan if the borrower defaults. They reduce financial risk for private lenders, making them more likely to finance high-risk or capital-intensive sectors like alternative protein infrastructure.

The problem

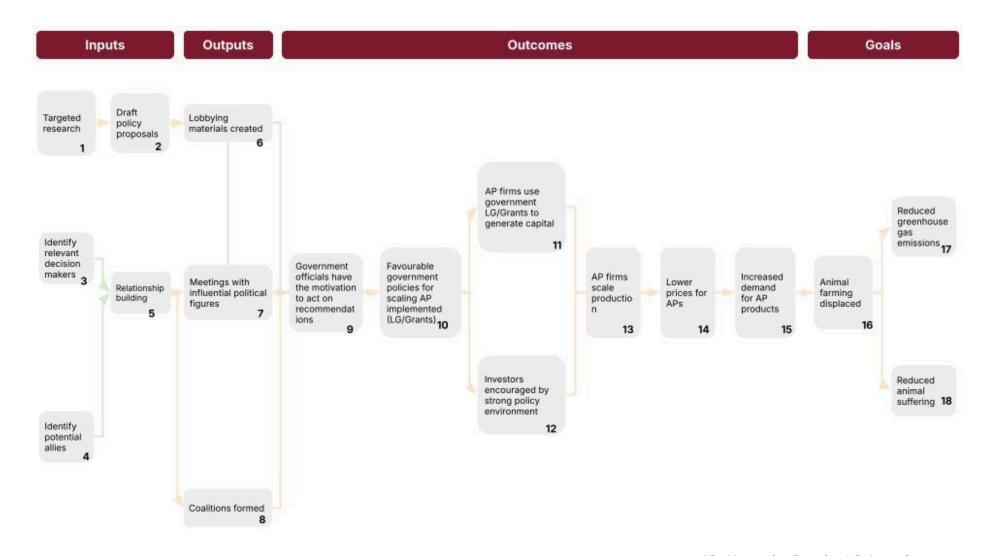
Animal agriculture is one of the largest contributors to environmental degradation and animal suffering. It is responsible for between 12% and 20% of global anthropogenic greenhouse gas emissions (<u>Blaustein-Rejto & Gambino, 2023</u>; <u>Poore & Nemecek, 2018</u>). Each year, over 85 billion land animals and billions more aquatic animals are raised and slaughtered for food, often under extreme confinement and suffering (<u>Mood et al., 2023</u>; <u>Ritchie, Rosado & Roser 2023a</u>; <u>Tenniswood, 2023</u>).

Alternative proteins present a scalable solution to address these harms, but in order to replace a significant portion of global meat consumption, alternative proteins must overcome cost and scale bottlenecks. While innovation in research and development (R&D) has received substantial attention, the transition from prototype to mass production remains underfunded and under-supported (GFI 2023b). Most alternative protein startups face high capital expenditure (CapEx) requirements estimated between \$15 million and \$250 million to build a single commercial facility, yet they struggle to attract investment due to perceived risk and uncertain returns (GFI 2024a). This underinvestment leads to high prices and limited availability, preventing alternative proteins from reaching cost parity with meat (GFI 2020; Siegrist et al., 2024).

The solution

Historically, public investment and policy support have been vital to help new technologies scale (Babich et al., 2020; NREL, 2021). The success of solar panels, electric vehicles, and certain vaccines all relied on public procurement, tax incentives, loan guarantees, and grants to reduce early-stage commercial risk and encourage investor confidence.

A new organization could address this bottleneck by lobbying for financial policy mechanisms that de-risk private investment and unlock capital for scaling.


2 Theory of change

We decided to focus on the ToC depicted in Figure 1. The core focus of the envisioned organization would be to lobby government officials to allocate funds for loan guarantee programs which would be made available to alternative protein companies attempting to scale.

Loan guarantees for infrastructure scale-up appear particularly interesting as outlined in the evidence review section, but other financial interventions were also identified as promising. These include:

- Loan guarantees and direct loans
- Grants for manufacturing facilities
- Transferable tax credits (investment tax credits or production tax credits) for manufacturing facilities
- Long-term, fixed price take-or-pay offtake contracts from government entities
- Grants for engineering and project development work
- Grants for demonstration-scale projects
- Public procurement mandates
- Advanced Market Commitments (AMCs)

For each of these alternative interventions the ToC would largely remain unchanged. Below we outline the theory of change for this intervention, and the assumptions being made across the theory of change. These assumptions are color-coded based on our certainty in them where green is high certainty, yellow is moderate certainty, and red is low certainty.

AP: Alternative Protein ; LG: Loan Guarantee

Figure 1: Theory of Change for this non-profit organization

- 1. We can identify policy opportunities and financial interventions to aid the scaling of alternative protein (Moderate certainty)
- We can create convincing evidence-based proposals for policymakers (Moderate certainty)
- 3. We can identify relevant decision makers (High certainty)
- There are potential allies aligned with the acceleration of alternative protein (High certainty)
- 5. We can get warm or cold introductions to policymakers and allies through existing contacts (Moderate certainty)
- 6. There is strong evidence that alternative proteins are a solution to issues politicians are concerned with (High certainty)
- 7. Our connections, coalition, and research are persuasive enough to get meetings with influential decision makers (Moderate certainty)
- 8. There are strong aligned stakeholders willing to push for financial policies (Moderate certainty)
- Our campaign materials, coalition, and meetings are persuasive enough to convince government officials to be motivated to enact our policy recommendations (Moderate certainty)
- Motivated government officials can enact our recommended interventions,
 despite efforts of a counter-lobby (Moderate certainty)
- 11. Alternative protein companies are aware of the policies and are eligible to receive grants (High certainty)
- 12. Investors are sensitive to government policy (Moderate certainty)
- 13. Financial incentives to scale production are effective (Moderate certainty)
- 14. Scaling is an important bottleneck in achieving price-competitive alternative protein (Moderate certainty)

- Government interventions are at a large enough scale to meaningfully impact the bottleneck (Low certainty)
- 15. Consumers are sensitive to the price of alternative protein (Moderate certainty)
- 16. Consumers select alternative proteins to replace conventional animal proteins (Moderate certainty), Animal farming is sensitive to demand (High certainty)
- 17. Alternative proteins result in fewer tonnes of CO₂ equivalent being released per kg versus comparable existing animal proteins (High certainty)
- Suffering from animal agriculture is greater than alternative protein production (High certainty)

Other uncertainties/assumptions

- An AIM-incubated organization can influence policymakers to release the kind of funding that is needed to ease bottlenecks to scaling (Low certainty)
- GFI or other organizations are not pivoting to this kind of policy ask
 (Moderate certainty)

3 Quality of evidence

3.1 Evidence that a charity can make change in this space

Are scaling bottlenecks present and impactful for the mass adoption of alternative protein?

Public investment in alternative proteins falls far short of the estimated need.

Global Innovation Needs Assessments estimates that while \$5.7 billion per year in public investment is needed to unlock the sector's commercial potential, total public sector investment into alternative protein was only \$510 million in 2024 (GFI 2024b; Global Innovation Needs Assessments 2021). Estimates suggest that reaching 10% global meat replacement with cultivated meat requires an estimated \$1.8 trillion in investment (Hooper and Dace 2021).

Capital shortages have constrained production scale-up, limiting the ability to meet growing demand and achieve cost-lowering economies of scale (Mylan et al., 2023). These limitations have contributed to higher prices for alternative proteins compared to conventional meat (GFI 2020; Siegrist et al., 2024). While the "price, taste, and convenience" hypothesis has been challenged (Peacock 2023), price remains a significant barrier to uptake. Evidence consistently shows that cost is among the most important factors influencing consumer decisions on alternative proteins (Peacock 2023; Szenderák et al., 2022), and demand is highly price-elastic (Dogbe et al., 2024; Liu and Ansink 2024).

Historical analogues suggest that public investment can play a catalytic role. For example, extensive subsidies in the solar energy sector—such as investment tax credits and feed-in tariffs—led to sharp declines in production costs and a surge in adoption (Babich et al., 2020; NREL, 2021). Similar mechanisms could help alternative proteins achieve price parity and reach scale.

Are government interventions at a large enough scale to meaningfully impact scaling bottlenecks?

Governments have demonstrated a growing willingness to fund alternative proteins, with global public investment reaching a total of \$2.1 billion by 2024, including \$510 million raised in that year alone (GFI 2024b).

Currently, most government funding goes towards R&D rather than infrastructure. To date, only 16 grants have been made that have solely focused on infrastructure, whereas 336 grants have been made that are solely focused on R&D. Total infrastructure investment is ~\$226M, with an average grant of \$14.1M. We provide more information on each of these grants in Table 1. Total R&D investment is ~\$564M, with an average grant of \$1.8M. Note that some multi-purpose grants are not included in these numbers.

Table 1: Previous infrastructure grants

Funding government	Recipient organization	Total funding	Year	Information on grant	Link
Canada	Merit Functional Foods	\$73,894,500	2020	Winnipeg plant gets CAD\$100M in federal financing to pull protein from peas, canola	
Finland	Solar Foods	\$4,568,040	2020	Solar Foods: Commercializing Solein	<u>Link</u>
	Solar Foods	\$10,969,100	2021	Solar Foods accelerates production of climate-friendly protein with investment from The Finnish Climate Fund	<u>Link</u>
	Solar Foods	\$37,298,680	2022	Solar Foods receives a €34 million grant to ramp-up Factory 01 and start preparations for Factory 02	<u>Link</u>
	Enifer	\$13,145,700	2024	Grant to Enifer for commercial-scale mycoprotein facility	<u>Link</u>
	Synbio Powerlabs	\$3,248,500	2024	Synbio Powerlabs scale up facility	Link
France	Umiami	\$11,425,804	2022	Umiami acquires Unilever factory to establish 'Made-in-France plant-based meat'	<u>Link</u>
	Standing Ovation	\$3,285,135	2024	Standing Ovation Receives €3M from French Government and Bpifrance to Scale Non-Animal Caseins for Novel Dairy Products	<u>Link</u>
Israel	Multiple	\$2,000,000	2021	2021 Israel Innovation Authority Funding for Alternative Protein Startup Pilot Facilities	<u>Link</u>
	TBD	\$14,000,000	2023	Israel seeks to create R&D fermentation hub to maintain food tech edge	<u>Link</u>
Japan	Integriculture	\$2,200,000	2020	Development of commercial production site for cellular agriculture products such as cell-cultured meat	<u>Link</u>
	Umami United	\$6,328,400	2023	Umami United receives government grant for global expansion	<u>Link</u>
	Integriculture	\$12,905,244	2023	IntegriCulture gets government grant for demonstration of cell ag production system	Link

Funding government	Recipient organization	Total funding	Year	Information on grant	Link
Spain	Biotech Foods SL	\$2,955,481	2022	Biotech Foods Cultivated Meat Laboratory in San Sebastian	<u>Link</u>
UK	Multus Biotechnology	\$2,500,000	2023	Multus Biotechnology Growth Media Production Plant	<u>Link</u>
USA	Liberation Labs	\$25,000,000		Liberation Labs bags \$25M USDA-backed loan to fund US biomanufacturing hub	<u>Link</u>

The Capex needed to build commercial alternative protein facilities is between \$15-250 million, meaning government grants are likely a helpful adjunct to scaling alternative protein but are unlikely to be transformative on their own unless larger investments are achieved (GFI 2024a). It is possible that a strong financial incentive, like a loan guarantee, would signal to private investors that scaling alternative protein is less risky, which could entice further investment outside of the loan guarantees. However, there was disagreement among experts about the viability of influencing private investment (see here).

Will an AIM-incubated charity be able to effectively lobby for large loan guarantees?

Based on estimates from Giving Green and self-reported spending for the Good Food Institute (GFI) US, in 2023 GFI spent around ~\$4.6 million on lobbying and managed to secure ~\$7.7 million in direct grants for R&D work (GFI 2023a; Giving Green 2024). This would be a return on investment of \$1.67 per dollar spent.

We are unsure whether an AIM-incubated charity will succeed but we are encouraged by GFI's success and expert agreement that a new organization could succeed in the US and Europe.

Will loan guarantees be effective at helping alternative protein companies scale?

Loan guarantees are a safer investment for governments than grants because they only have to refund the defaulted credit provided to the business. The U.S. Department of Energy's \$35.7 billion loan program to advance ultra-efficient vehicles, nuclear energy, and advanced fossil fuels yielded just \$810 million in losses while generating \$2.69 billion in interest payments (Bhandary et al., 2020). This highlights the multiplicative effect that loan guarantees have on credit. One meta-analysis found that every \$1 of guaranteed credit created \$0.65 in additional lending to SMEs (Cowan et al., 2015).

For the alternative protein sector, loan guarantees could be particularly valuable. They reduce the need for collateral, which is often a barrier for

early-stage companies, and could help firms scale up production capacity more quickly (Wang et al., 2020). Evidence suggests that loan guarantees also deliver long-term benefits: a meta-analysis found increases in company assets (7-35%), sales (6-35%), and employment (8-30%) among European firms receiving guarantees (Bertoni et al., 2023). However, the impact on default risk is mixed. Cowan et al. (2015) found that firms that received loan guarantees were more likely to default, while Brault & Signore (2019) reported a 4-5% reduction in default risk associated with guarantees.

Are lobbying efforts persuasive enough to convince government officials to enact our policy recommendations?

There is significant alignment between governmental priorities and the case for scaling alternative proteins, suggesting that well-designed lobbying efforts could successfully motivate policymakers to support interventions in this space.

Governments are often driven by goals related to economic development, national security, resilience, and environmental sustainability. Alternative proteins can be positioned to contribute meaningfully across these areas.

Economic growth and job creation are central concerns for most governments because they translate into improved livelihoods, regional development, and increased tax revenues. Industries like alternative proteins promise innovation, advanced manufacturing, and new supply chains. In the UK alone, investment in cultivated meat is projected to create 9,000–16,500 jobs and generate £266–£523 million in tax revenue (Oxford Economics, 2021).

Many larger governments may prioritize maintaining leadership in strategic sectors such as biotechnology, viewing it as essential for economic competitiveness and future industrial strength. Alternative proteins fit into this narrative because their production relies on advanced processes similar to those used in pharmaceuticals, renewable chemicals, and high-tech materials (Anyanwu et al., 2024; Ogundele et al., 2024). This connection enables policymakers to consider alternative proteins not just as food replacements but as part of broader industrial and technological advancement, which can be particularly persuasive in countries competing to stay ahead in global innovation.

Food sovereignty and supply chain stability have become pressing issues in light of recent crises such as pandemics, trade disruptions, and disease outbreaks like avian influenza, which have revealed weaknesses in traditional animal agriculture (Tubb and Seba, 2021; Zhang et al., 2024). Alternative proteins provide a way to reduce dependence on global supply chains and enhance domestic control over food production, which is increasingly valued by governments aiming to ensure national security and protect their populations from shocks (GFI, 2024c). Alternative proteins can also be used by the military to support food production on-demand and on-site, reducing the logistical burden of food transportation (DARPA, 2021).

Environmental sustainability is another critical driver of government action, with many countries committed to reducing greenhouse gas emissions, conserving land and water, and achieving climate targets. Alternative proteins can help meet these goals by offering significant environmental benefits compared to conventional animal agriculture, aligning well with national climate strategies (Collett et al., 2021).

Taken together, these areas of alignment suggest that advocacy for alternative protein scale-up can be highly persuasive if framed to reflect government priorities in economic growth, technological leadership, security, resilience, and sustainability. However, the effectiveness of lobbying efforts will depend on tailoring these arguments to the specific political and cultural context of each country and choosing the narratives most likely to resonate with policymakers and institutions.

3.2 Evidence that alternative protein adoption has the expected benefits

Does alternative protein displace animal products?

We have some uncertainty that alternative proteins will fully displace animal products. Plant-based food can be purchased in addition to animal products, instead of displacing them (<u>Trewern et al., 2022</u>).

- Consumer insights from GFI suggest that 20% of consumers of plant-based products are trying them alongside their usual meat consumption, but the remaining 80% of consumers are replacing at least some of their meat consumption with plant-based products (GFI, n.d.).
- Tonsor, Lusk & Schroeder (2021) found that "Consumer reports that examine product-specific behaviour reveals that among consumers who buy plant-based meat, 49% of these individuals said they would have bought beef otherwise, and 38% said they would have bought chicken otherwise" (Bryant Research, 2023, para. 8) which suggests that 13% of consumers could be trying plant-based products alongside their usual meat consumption.
- Neuhofer & Lusk (2022) find that most households that buy plant-based meat alternatives (PBMAs) also buy meat: "About 2.79% of households only purchased PBMAs. About 86% of PBMA buyers also bought ground meat; however, PBMA buyers spent about 13% less on ground meat" (abstract).

On the other hand, a review of existing literature on this question by Bryant Research (2023) suggests that alternative proteins are replacing animal proteins. To arrive at this conclusion, they cite that there is a negative correlation between change in consumption of animal products and change in consumption of alternatives in the same category—essentially that a plant-based burger is likely to displace a meat burger more than a bean stew. They also reference another study (Slade, 2023) suggesting that a one-gallon increase in non-dairy milk sales is associated with a 0.43-0.6-gallon reduction in dairy milk sales. Ultimately, their

argument is that available evidence suggests the similarity in the taste profile of alternative proteins means that they are more likely to be purchased as a substitute for meat products. This holds even in cases where an alternative (such as soy milk) is purchased alongside the animal product (cow's milk) as the alternative displaces some amount of the animal product bought.

Overall, the concern that alternative proteins may not displace animal products is a valid one, but we would expect a significant proportion of consumption to replace normal levels of animal product consumption. However, it is difficult to determine what percentage of consumption is actually substitution and what percentage is additive.

Does displacing animal products with alternative protein reduce animal suffering?

It is clear that reducing demand for animal products will reduce animal suffering.

The scale of animal use in global food production is immense. Approximately 85 billion land animals are raised for food each year, alongside an estimated 78 to 171 billion farmed fish and crustaceans (Mood et al., 2023; Ritchie, Rosado & Roser, 2023a; Tenniswood, 2023). Global demand for animal products continues to rise (Ritchie, Rosado & Roser, 2023b). This demand sustains an industrial system where the vast majority of animals are raised on factory farms, often under conditions that severely compromise their welfare (Sentience Institute, 2019).

Key welfare issues include:

- Severe confinement that restricts natural behaviors, such as laying hens in battery cages unable to spread their wings or groom (Welfare Footprint Project, 2021).
- Poor water quality control in aquaculture, leading to widespread suffering among farmed fish (<u>Cerquiera & Billington, 2020</u>).
- Welfare abuses in shrimp farming, such as eyestalk ablation (<u>SWP, 2022</u>).
- Selective breeding for productivity, increasing risks of lameness, disease, and chronic health conditions (<u>van Marle-Köster & Visser, 2021</u>).

- Psychological stress from isolation, disrupted social structures, and inability to perform species-specific behaviors (Welfare Footprint Project, 2021).
- Inhumane transport and slaughter practices, often involving prolonged suffering before death (<u>Broom, 2005</u>; <u>Nielsen et al., 2010</u>; <u>SWP, 2022</u>).

Does displacing animal products with alternative protein reduce the environmental impact of the agricultural system?

Animal agriculture is the leading contributor to environmental impacts within the global food system (Poore & Nemecek, 2018). Estimates from researchers and international bodies attribute between 12 and 19.7 percent of global greenhouse gas emissions to livestock production, accounting for as much as 36 to 60 percent of all emissions linked to food systems. Ruminants, especially cattle, are particularly significant contributors due to methane emissions from digestion and the extensive land use required for grazing and feed production (Joiner & Toman, 2023).

Environmental impact assessments consistently identify beef, lamb, and dairy as the most carbon-intensive food products, regardless of whether the comparison is made by weight, protein content, or caloric value (Poore & Nemecek, 2018). Producing one kilogram of beef emits nearly 100 kilograms of CO2 equivalent on average, making it the most emissions-heavy livestock product (Poore & Nemecek, 2018; Ritchie, Roser & Rosado, 2022). Compared to plant-based and other alternative proteins, animal-derived foods also tend to demand substantially more land, water, and energy throughout their production cycle (Ritchie, Roser & Rosado, 2022).

4 Expert views

As part of our investigation, we consulted six people who are familiar with this space:

- Zak Weston Working on alt protein scale-up initiatives, ex-GFI
- Alan Darer Vice President at Food Solutions Action
- Alice Ravenscroft Head of Policy at GFI Europe
- Pauline Grimmer Policy Manager at GFI Europe
- Helene Grosshans Infrastructure Investment Management at GFI Europe
- Maille O'Donnell Senior Policy Specialist at GFI US

Our findings from these conversations have influenced our decision-making across the report. This section summarizes the key findings from the consultations not mentioned elsewhere.

All experts suggested strong support for the idea of an organization focused on scaling alternative proteins through policy advocacy, agreeing that this area is highly neglected and large enough in scale to justify new efforts, though views differed somewhat on how tractable it is.

The experts saw significant potential because alternative proteins align well with government goals around economic growth, national security, and environmental sustainability. A narrow national security or industrial competitiveness frame could be particularly persuasive, especially in the US.

Experts cautioned that success will depend on founders having strong political knowledge, relationship-building skills, and an ability to frame messages to different audiences.

They agreed that scale-up funding is far less developed than R&D support, creating both an urgent need and an opportunity, but there is uncertainty about how much funding is required, whether government funding will encourage private

investment, how quickly policy changes can be achieved, and whether lobbying for scale-up funding might draw resources away from R&D.

Overall, the intervention appears promising but would require a strategic, adaptable approach and founders capable of navigating complex political landscapes.

Need for scale-up funding

Experts thought that more actors were needed to push government funders to urgently prioritize scale-up financing, or many of the best alternative protein innovations risk being lost. They were excited about the following financial interventions:

- Loan guarantees and direct loans
- Grants for manufacturing facilities
- Transferable tax credits (investment tax credits or production tax credits) for manufacturing facilities
- Long-term, fixed price take-or-pay offtake contracts from government entities
- Grants for engineering and project development work
- Grants for demonstration-scale projects
- Public procurement mandates
- Advanced Market Commitments (AMCs)

They thought that securing scale-up funding was crucial. Without solving "the middle of the pipeline" funding, allowing companies to build demo and first-of-a-kind commercial facilities, alt proteins will stagnate.

Framing

A new charity is likely to be most successful if it takes a bipartisan approach, especially in the US. It may have more success by focusing on job creation and

economic development, international competition (in the US this should be framed as competition with China), export market growth, meeting increasing global protein demand through innovation, national security, and food security, instead of animal welfare and climate arguments (as these are usually seen as liberal talking points).

Founder profiles

Experts suggested that previous policy experience was very important, as you are unlikely to see success in getting standalone legislation passed, so you will need to understand existing legislative pathways that alternative protein funding could fit into. For this, you will need to know which committees have jurisdiction, which agencies implement specific programs, and how to craft statutory and regulatory language to make these policies viable. They also thought that a new charity could gain access to this expertise through an early hire.

Much of this work will be focused on relationship building, so founders will need to be able to network successfully.

Previous alternative protein experience would also be nice to have in the founding team and government officials need to see you as an expert in the space.

Relationship between R&D and scale-up funding

All experts agreed that securing scale-up funding is much more neglected than securing more R&D funding.

Although there was some uncertainty amongst experts, they largely agreed that there is little risk of scale-up funding cannibalizing R&D funding as they usually come from different funding streams. In fact, most experts thought that R&D and infrastructure funding were seen by governments as complementary rather than competing policy areas. They believed governments will want to invest in both to ensure that scientific advances translate into domestic economic benefits.

Private investment

This was the topic where there was the most disagreement between experts. Some experts suggested that government support signals confidence in the sector, which is incredibly valuable to investors, especially in a downturn. This support de-risks investment and so we should expect private investment to follow government funding. However, other experts were more cautious and highlighted that we have little evidence to support this relationship yet. We have not yet observed strong effects of government funding on investor behavior in the alternative protein space.

5 Additionality and geographic assessment

This section discusses our considerations of additionality and review of locations where this idea could be delivered in light of the burden, tractability and potential additionality.

5.1 Neglectedness

Actors delivering this intervention

The Good Food Institute does a wide range of policy work. Their work to secure R&D funding for alt proteins from governments across their affiliate regions (US, Europe, Asia Pacific, India, Israel, Japan, and Brazil) is the most closely associated to this idea. They also do some work focused on securing scale-up funding, though this is relatively small compared to their other policy focus areas. There is only one full time equivalent (FTE) on the GFI Europe team that works to secure scale-up funding from EU governments, and there is an additional one FTE working on this in GFI US. The GFI Europe team also has one FTE focused on private investors.

Food Solutions Action, which works on building political power for animals in the US, also does some work focused on securing scale-up funding for alt proteins, though this is just one of many programs they are working on.

Table 2: Organizations working to secure scale-up funding for alt proteins

Organization/ Link	MANGO/Fo NGO ¹	Scale/Coverage	FTEs	Funding
Good Food Institute	MANGO	7 affiliate regions (US, Europe, Asia Pacific, India, Israel, Japan, and Brazil)	~150 total employees, 2 FTE focused on securing scale-up	\$40.7 million total funding, around 10% of which goes to their policy

¹ Multi-armed NGO (MANGO) and Focused NGO (FoNGO). See "Why household name NGOs are unlikely to offer the best value for money" from the Happier Lives Institute (2025)

Organization/ Link	MANGO/Fo NGO ¹	Scale/Coverage	FTEs	Funding
			funding.	work. ²
Food Solutions Action	MANGO	The US	7 total employees spread across many projects.	\$1.8 million total funding. ²

5.2 Geographic assessment

See our full geographic assessment here.³

Our geographic assessments seek to identify priority countries that are then explored in depth by the entrepreneurs who take up the ideas to put into action. We hypothesized that countries with a strong existing alternative protein market and a conducive business environment would be best suited for an intervention targeted at scaling the industry rather than introducing it.

Our geographic assessment only focuses on countries that have previously invested in alt proteins (R&D or scale-up funding). We discard countries whose governments have not previously invested. We believe that because GFI is largely focused on R&D, it is not necessary to avoid working in GFI affiliate regions.

Table 3 describes the criteria used and weights assigned.

Table 3: Criteria and weights used in our Geographic Assessment.

Category	Criteria	Weight	Data source	Notes
Scale	Number of alternative protein companies	20%	GFI, 2025 (Note that data was pulled on 19 June 2025)	This was used as a proxy for the size of the alternative protein market. We believe a new organization targeting alternative

² It is unclear what % of this goes towards trying to secure scale-up funding.

³ Reported as of 29.07.2025—note the models are live and may be subject to tweaks or (in rare occasions) large changes that may not be reflected in the text if carried out after publication.

Category	Criteria	Weight	Data source	Notes
				protein scaling should focus on regions with strong existing markets.
Scale	Land animals slaughtered for meat	10%	OWID, 2023	This was used to estimate the impact of replacing a proportion of animal products in the country.
Scale	Elcano Global Presence Score	10%	Elcano, 2024	This was used to estimate the global influence each country has. An influential country investing in alternative protein scale-up could result in others following suit.
Scale	Population	7.5%	OWID, 2023	This was used to estimate the impact of replacing a proportion of animal products in the country.
Neglected ness	GFI affiliate location	2.5%	GFI, n.d.	Used as a proxy for neglectedness. All the experts seem to agree that a new organization could work synergistically with others in this space. There is some uncertainty there so a small negative score was associated with a GFI affiliate location with active policy work.
Tractability	Prior government investment in	12.5%	GFI, 2025 (Note that data was	Prior government investment is likely a strong predictor of

Category	Criteria	Weight	Data source	Notes
	alt protein		pulled on 19 June 2025)	future investment.
Tractability AIM tractability score		10%	AIM, 2023	Used as a proxy for general tractability for a charitable organization
Tractability Global Innovation Index		10%	WIPO, 2024	Used to estimate alignment with government goals
Tractability Import dependence		10%	The Food Security Portal, 2025	Used to estimate alignment with government goals
Tractability	StartupBlink's Global Startup Ecosystem Index Score	7.5%	StartupBlink, 2025	Used to estimate alignment with government goals

The United States, Canada, and the United Kingdom are recommended as top-priority countries for alternative protein lobbying due to their strong enabling environments and significant existing market presence. All three demonstrate high levels of prior government investment, established alternative protein sectors, and excellent business environments, factors critical for interventions focused on scaling rather than market introduction. Table 4 provides what we think are top candidate countries for this work.

Table 4: Recommended target countries

Country	Tier	Strengths	Weaknesses
United States of America	1	Large scale, large prior investment, large existing market size, excellent business environment	GFI affiliate location (minor issue)
Canada	1	Large prior investment, large existing market size, excellent business environment, lack of GFI affiliate	None
United	1	Large prior investment, large	GFI affiliate location (minor

Country	Tier	Strengths	Weaknesses
Kingdom		existing market size, excellent business environment	issue)
China	2	Large scale, large existing market size, excellent business environment	Low AIM tractability score, moderate prior investment
Germany	2	Large prior investment, large existing market size, excellent business environment	GFI affiliate location (minor issue)
Singapore	2	Highly import dependent, excellent business environment, highlighted as promising by experts	GFI affiliate location (minor issue) and a moderate market size and prior investment
The Netherlands	2	Excellent business environment and AIM tractability	Lower scale, GFI affiliate location (minor issue), moderate market size and prior investment

6 Cost-effectiveness analysis

We created a cost-effectiveness model that adapts Giving Green's model of the impact of The Good Food Institute's work to secure public funding for alt protein R&D.

6.1 Results

Based on our cost-effectiveness estimate, we think that a new organization focused on lobbying for increased government investment in alternative protein could operate at an expected cost-effectiveness of averting $\sim 3-51$ SADs/\$. We also expect the organization to cost \$0.54-\$10.17 per tonne of CO₂ equivalent averted.

Costs

We model two different cost estimates:

- Total budget: Total costs of \$101,130,900 based on GFI's total budget for their work in 2016-2022. These were the costs included in Giving Green's CEA.
- 2. Lobbying budget: Reduced costs of \$11,397,162 based on the percentage of GFI's budget that went towards their lobbying work in 2023.

Effects

Giving Green's CEA models the impact of a food system where there is "high innovation" and alternative protein production has rapidly scaled compared to a "low innovation" food system. The model attributes a probability of 12.5% that securing public funding for alt protein R&D will help move the global food system from a "low innovation" scenario to a "high innovation" scenario. Giving Green then estimates that the percentage of impact (public funding raised for alt protein R&D) that is attributable to GFI is 1.5% as there are many actors working in this space.

This gives a total change in probability of 0.19% (12.5%*1.5%) of moving to the "high innovation" scenario due to GFI. The model assumes 15 years of counterfactual impact before the business-as-usual scenario is roughly similar to the "high innovation" scenario. We hold all of these assumptions constant in our model.

Animal welfare impacts

Giving Green's model only calculates the climate impacts of GFI, but our model also calculates the animal welfare impacts. To do this, we use the difference in livestock production between the "high innovation" and "low innovation" scenarios, which Giving Green's model already calculates to determine the climate impacts, and calculate the number of beef cows, pigs, broiler chickens, and sheep impacted based on global average production data and yield per animal. We then consider the number of Suffering-Adjusted Days (SADs) that could be averted by sparing these animals a life on a factory farm, and multiply this by the number of animals impacted to get the total expected value of this work.

We also include some adjustments to the model as Giving Green's model is focused on R&D funding, but we are interested in commercialization and scale-up funding. We estimate the value of commercialization funding compared to R&D funding by comparing the total amount of government R&D spending needed to unlock the full benefits of alt proteins (\$4.4B, Global Innovation Needs

Assessments 2021) to the total amount of government spending on commercialization needed to unlock the full benefits of alt proteins (\$5.7B, Global Innovation Needs Assessments 2021). This suggests that commercialization funding could be 1.3x as valuable as R&D funding.⁴ As this new organization will be advocating for loan guarantees from the government, we also include the additional funding generated per dollar spent on loan guarantees: \$0.65 was generated for each dollar invested in loan guarantees (Cowan, Drexler & Yanez, 2015).

We calculated the net present value of the benefits for the intervention by applying the following discounts:

⁴ We note this is a very rough approach to guesstimate effects—we essentially assume a direct relationship between costs and value.

• A standard annual discount of 1.4%.

Based on different combinations of all these inputs, our model produces four cost-effectiveness estimates as shown in Table 5. These estimates are color-coded green if they meet our cost-effectiveness bar and red if they do not.

Table 5: Cost-effectiveness estimates produced by our CEA

Estimate	\$ per tCO2e	SADs/\$
Estimate 1—No adjustments to Giving Green's model. Animal welfare impacts of GFI's work to secure R&D funding.	\$10.17	2.70
Estimate 2—Giving Green's model but using GFI's lobbying budget instead of their total budget	\$1.15	23.95
Estimate 3—Giving Green's model but adjusted for the value of commercialization funding	\$4.76	5.77
Estimate 4—Giving Green's model but using GFI's lobbying budget instead of their total budget and adjusted for the value of commercialization funding	\$0.54	51.20

Sensitivity analysis and considerations

There are several reasons this CEA model could be over-stating or under-stating the results.

Table 6: CEA considerations

Reasons this intervention could be more cost-effective than modeled, all else equal.

- Reasons this intervention could be less cost-effective than modeled, all else equal.
- GFI's lobbying budget is split across three different lobbying activities, whereas an AIM charity would be focused on securing commercialization funding and will likely run much more lean than GFI.
- This only models the impact on land animals, not aquatic animals.
- This models a global focus, rather than a country-by-country focus and an AIM charity will likely start out working in just one country.
- GFI is likely to be more successful in lobbying than an AIM charity, at least initially whilst the AIM charity doesn't have credibility or reputation.

7 Implementation

This section discusses implementation factors that we think are of relevance for both 1) deciding whether we should recommend the ideas, and 2) the entrepreneurs considering taking the idea to scale.

7.1 What does working on this idea look like?

Figure 2 notes how we characterize this proposed idea along an explore-exploit continuum. We place this idea toward the exploit side of the spectrum. The policy tools involved, such as loan guarantees and tax incentives, are well-established and have a strong track record in sectors like clean energy and biotech. The ToC is clearly defined and supported by historical evidence that public investment at this stage can drive down costs and accelerate scale-up. Political interest in alternative proteins is growing in some countries, with several governments making relevant investments. Given this context, we believe the intervention involves applying proven mechanisms to a neglected but promising area.

Explore Exploit

Figure 2: Explore-exploit

A charity dedicated to lobbying for government support to scale alternative protein production would operate as a policy-focused organization working within government, industry, and civil society ecosystems. Day-to-day activities would require a blend of research, relationship-building, strategic communications, and coalition coordination. Key daily responsibilities are likely to include:

Identifying policy opportunities

 Monitoring and analyzing national legislation, budget announcements, industrial strategy papers, and investment plans to find entry points for financial policy recommendations

- Mapping out existing funding mechanisms such as innovation grants, agricultural subsidies, green transition financing, and infrastructure loans that could be adapted to support alternative protein companies
- Tracking the annual policy calendar to time proposals strategically, ensuring alignment with public consultation periods, pre-budget submissions, and investment strategy reviews

Engaging decision-makers

- Researching and maintaining a database of relevant policymakers and civil servants, including those in ministries of agriculture, climate, innovation, finance, and economic development
- Building relationships with mid-level technocrats and senior advisors through scheduled meetings, informal briefings, and attendance at public policy events
- Organizing tailored policy briefings and closed-door roundtables with experts and stakeholders to surface institutional appetite for reforms and generate early buy-in
- Engaging policymakers may not be enough. One of the experts we
 interviewed suggested that effective lobbying also requires political capital,
 financial influence (through PACs or C4s), and the ability to engage elected
 officials as donors and supporters.

Developing compelling materials

- Producing policy proposals, cost-effectiveness summaries, investment case documents, and stakeholder memos tailored to the audience and jurisdiction
- Preparing talking points and backgrounders for allies, coalition partners, or parliamentary champions to use in external communication or debates
- One of the experts we spoke with also highlighted the importance of translating technical financial interventions into language that resonates with policymakers, particularly by framing alternative proteins as critical for

job creation, food security, economic competitiveness, or food sovereignty rather than simply as environmental or animal welfare projects.

Building coalitions

- Identifying and engaging potential allies including alternative protein companies, investors, academic institutions, think tanks, and sustainability NGOs
- Facilitating joint sign-on letters, co-authored policy papers, or informal working groups to strengthen advocacy reach and legitimacy
- Coordinating with other actors in the alternative protein policy space, especially the Good Food Institute, to avoid duplication and increase message coherence

Providing technical support and feedback loops

- Advising on the design of new financial instruments such as loan guarantees or capital grants to ensure they are inclusive of alternative proteins and responsive to company needs
- Offering informal feedback to government staff on draft program guidelines or policy frameworks
- Tracking and documenting early signals of success such as policy shifts, new program inclusion, or pilot investments, and sharing them with funders and supporters

We do not expect this work to be purely reactive. The charity will likely create its own momentum by proactively identifying neglected but high-impact interventions and framing them in ways that align with national priorities. This means the team must be adaptive, politically sensitive, and willing to invest in long-term relationship-building. In early stages, progress may be slow and largely invisible, with wins appearing after months of foundational engagement. However, even small breakthroughs in public funding eligibility or financial incentives can unlock tens of millions in downstream capital for the alternative protein sector.

The charity's success will ultimately rest on its ability to function as a persuasive intermediary between government ambition and market readiness, pushing public capital toward a transition that benefits consumers, animals, and the climate.

7.2 Key factors

This section summarizes our concerns (or lack thereof) about different aspects of a new charity putting this idea into practice.

Table 7: Implementation concerns

Factor	Level of concern
Talent	Moderate
Access to information	Low
Access to relevant stakeholders	High
Feedback loops/Monitoring and Evaluation	Moderate
Execution difficulty/Tractability	Moderate
Complexity of scaling	Low
Risk of harm	Low
Funding	High

Talent

We rated talent as a moderate concern for this intervention. Most of the core tasks involved could be effectively handled by a skilled generalist with strong communication and strategic thinking skills. However, there would be a great benefit to the founding team having local policy experience as this political contextual knowledge and/or existing connections could speed up the charity's progress.

If the organization were to pursue more technically complex financial interventions, such as advanced market commitments or deeper involvement in the design of

financial instruments, this would likely require someone with specialized experience in public finance or economics. However, focusing primarily on lobbying for the creation of a fund or increased government emphasis on alternative protein scale-up is unlikely to require that level of technical expertise.

Access

"Access" largely refers to the ease with which a newcomer can gain traction with stakeholders or get information that is necessary to design or evaluate the intervention.

Information

We rated access to information as a low concern because much of what is needed to design the intervention is publicly available through GFI and similar sources.

Data on industry bottlenecks, relevant policy tools, and existing government programs is easy to access.

Relevant stakeholders

We rated access to relevant stakeholders as a high concern because success in this intervention depends heavily on building relationships with government decision-makers and influential allies. Gaining meetings with senior policymakers, securing warm introductions, and building credibility within government circles are all essential for moving financial policy recommendations forward. Without existing networks or institutional backing, a poorly financed newcomer may struggle to gain initial traction, particularly in jurisdictions where gatekeeping is strong or where alternative proteins are not yet seen as a priority.

Experts supported the view that access to stakeholders was the most significant limiting factor for this intervention. Across both U.S. and European contexts, experts consistently emphasized that established relationships and insider access are crucial prerequisites for effective policy advocacy. New organizations without a recognized brand, political capital, or existing networks face major hurdles in securing meetings, being taken seriously, and influencing high-level decisions such as legislative reforms or financial guarantees.

Building trust with stakeholders was seen as a long-term investment requiring deep institutional ties, local knowledge, and personal credibility. Efforts to engage politically without these foundations, whether through cold outreach or general lobbying, were described as largely ineffective. The consensus was clear: meaningful policy change depends not just on good ideas, but on who you know and how well you are connected.

Feedback loops/Monitoring and Evaluation

We rated this area as a moderate concern. While it is difficult to attribute the scaling of alternative proteins to any single actor or policy, the end goals of the intervention such as the creation of government funds, loan guarantees, or other financial tools are concrete and trackable. Outputs like policy proposals submitted or meetings conducted are easy to monitor, and major outcomes such as new public investment programs provide clear evidence of progress. However, connecting these outcomes to broader industry changes and isolating the charity's specific contribution remains challenging. Experimental evaluation is not realistic, but progress can still be meaningfully assessed through careful tracking and documentation.

Tractability

We rated tractability as a moderate concern. Influencing policy is generally difficult and involves many factors outside the charity's control, including political timing, bureaucratic processes, and shifting priorities. However, in this case, some governments are already showing interest in investing in food innovation, economic development, and climate-aligned technologies, so the intervention often involves a targeted nudge rather than a fundamental shift. Alternative proteins are well-aligned with broader policy goals such as national security, sustainability, and food security, which increases the chances of success. While the path is not straightforward and will require persistent advocacy, relationship-building, and potentially political tools like PACs or C4s in some regions, it appears more feasible than many other forms of policy change. Tailoring

the messaging to resonate with national priorities, such as industrial competitiveness or strategic resilience, will be crucial to improving tractability in diverse political contexts.

Complexity of scaling

We rated the complexity of scaling as a low concern. Once early traction is achieved, the intervention can likely be expanded by entering new countries, repeating core policy asks, and reusing existing materials and research with only minor adjustments. The work is directly delivered by the charity, which makes it easier to maintain consistency and quality across locations. It does not depend on large teams, extensive infrastructure, or partnerships that could dilute fidelity. Many core activities, such as writing proposals and engaging policymakers, are scalable with relatively little additional cost. Furthermore, climate and innovation funding streams may support the growth of the organization and make expansion more financially feasible.

Risk of harm

We rated the risk of harm as low. The main potential concern is that lobbying for scale-up funding could divert resources away from research and development. However, expert input from FSA and GFI suggests that the sector is currently over-weighted toward R&D, and that shifting some focus to commercialization would likely be beneficial rather than harmful, helping to prevent promising innovations from stalling before reaching the market. There appear to be no significant risks to founders or beneficiaries, as the intervention focuses on policy change rather than direct service delivery to sensitive populations. A minor risk exists in facing political pushback or reputational challenges, particularly if lobbying for commercial funding is perceived as undue corporate subsidy, but overall the intervention carries low likelihood of direct harm.

Funding

We rated funding as a high concern. Experts suggested that it would be difficult to access climate funding for this work based on their prior experience. They thought that it was still worth trying but we may have to rely on funding from cost-effectiveness minded entities (e.g., Effective Altruist philanthropists) instead of climate funds, at least in the short term. This is not too concerning as this organization could run relatively lean.

8 Conclusion

Overall, our view is that lobbying to secure scale-up funding for the alternative protein industry is an idea worth recommending to future charity founders. We think that this work is very neglected and could benefit from a new non-profit that is solely focused on this intervention.

References

- Anyanwu, C., Olawumi, J., Odilibe, P., None Opeoluwa Akomolafe, None
 Chinyere Onwumere, & Osareme, J. (2024). The role of biotechnology in
 healthcare: A review of global trends. World Journal of Advanced
 Research and Reviews, 21(1), 2740–2752.
 https://doi.org/10.30574/wjarr.2024.21.1.0382
- Babich, V., Lobel, R., & Yücel, Ş. (2020). Promoting Solar Panel Investments:

 Feed-in-Tariff vs. Tax-Rebate Policies. Manufacturing & Service

 Operations Management. https://doi.org/10.1287/msom.2019.0860
- Bertoni, F., & Colombo, M. G. (2023). The long-term effects of loan guarantees on SME performance. Journal of Corporate Finance, 102408.

 https://doi.org/10.1016/j.jcorpfin.2023.102408
- Bhandary, R. R., Gallagher, K. S., & Zhang, F. (2021). Climate finance policy in practice: a review of the evidence. Climate Policy, 21(4), 529–545. https://doi.org/10.1080/14693062.2020.1871313
- Blaustein-Rejto, D., & Gambino, C. (2023, March 20). Livestock Don't Contribute 14.5% of Global Greenhouse Gas Emissions. The Breakthrough Institute.
 - https://thebreakthrough.org/issues/food-agriculture-environment/livestock-dont-contribute-14-5-of-global-greenhouse-gas-emissions
- Brault, J., & Signore, S. (2019). The Real Effects of EU Loan Guarantees.

 European Investment Fund.

https://www.eif.org/news_centre/publications/EIF_Working_Paper_2019_56.p

Broom, D. (2005). The effects of land transport on animal welfare. Transport of Farm Animals Collection.

https://www.wellbeingintlstudiesrepository.org/trafani/4/

Bryant Research. (2023, June 26). Alternative Meats Displace Demand for

Animal Products - Bryant Research. Bryant Research - Helping You Build
a Better Future of Food.

https://bryantresearch.co.uk/insight-items/alternative-meats-demand/

Cerqueira, M., & Billington, T. (2020). FISH WELFARE IMPROVEMENTS IN AQUACULTURE.

https://files.fwi.fish/Fish_Welfare_Improvements_in_Aquaculture.pdf

Collett, K., O'callaghan, B., Mason, M., Godfray, C., & Hepburn, C. (2021). The climate impact of alternative proteins Final 25% Series Paper Oxford Smith School of Enterprise and the Environment.

https://www.smithschool.ox.ac.uk/sites/default/files/2022-03/Climate_Impa

cts_of_Alternative_Proteins.pdf

- Cowan, K., Drexler, A., & Yañez, Á. (2015). The effect of credit guarantees on credit availability and delinquency rates. Journal of Banking & Finance, 59, 98–110. https://doi.org/10.1016/j.jbankfin.2015.04.024
- DARPA. (2021). A Cornucopia of Microbial Foods. Darpa.mil.

 https://www.darpa.mil/news/2021/cornucopia-microbial-foods
- Dogbe, W., Wang, Y., & Revoredo-Giha, C. (2024). Nutritional implications of substituting plant-based proteins for meat: evidence from home scan data. Agricultural and Food Economics, 12(1).

https://doi.org/10.1186/s40100-024-00324-8

- GFI. (n.d.). Consumer insights The Good Food Institute. The Good Food
 Institute. Retrieved June 27, 2025, from
 https://gfi.org/industry/consumer-insights/
- GFI. (2020). Reducing the price of alternative proteins.

 https://gfi.org/wp-content/uploads/2021/12/Reducing-the-price-of-alternative-proteins_GFI_2022.pdf
- GFI. (2021a, January 5). Food policy | Alternative protein | GFI. The Good Food Institute. https://gfi.org/policy/?_gl=1
- GFI. (2021b, January 5). Global affiliates | The Good Food Institute. The Good Food Institute. https://gfi.org/global/?_gl=1
- GFI. (2023a). GFI notes on 2023 990.

 https://gfi.org/wp-content/uploads/2024/11/GFI-2023-990.pdf
- GFI. (2023b, July 7). Research grants tracker The Good Food Institute. The Good Food Institute. https://gfi.org/resource/research-grants-tracker/
- GFI. (2024a). Funding the Build.

 https://gfi.org/wp-content/uploads/2024/09/Funding_the_build.pdf
- GFI. (2024b). The State of Global Policy: Alternative proteins. In https://gfi.org/resource/alternative-proteins-state-of-global-policy/
- GFI. (2024c, May 13). New report: Alternative proteins hold key to Europe's self-sufficiency GFI Europe. GFI Europe.

 https://gfieurope.org/blog/new-report-alternative-proteins-hold-key-to-europes-self-sufficiency/
- Giving Green. (2024). Deep Dive: The Good Food Institute.

 https://www.givinggreen.earth/mitigation-research/the-good-food-institute

%3A-deep-dive

- Global Innovation Needs Assessments. (2021). Protein diversity.

 https://www.climateworks.org/wp-content/uploads/2021/11/GINAs-Protein-Diversity.pdf
- Hooper, K., & Dace, H. (2021, November 17). The Protein Problem: How Scaling
 Alternative Proteins Can Help People and Planet. Institute.global; Tony
 Blair Institute.
 - https://institute.global/insights/tech-and-digitalisation/protein-problem-how-scaling-alternative-proteins-can-help-people-and-planet
- Joiner, E., & Toman, M. A. (2023, September 8). Agricultural Greenhouse Gas

 Emissions 101. Resources for the Future.

 https://www.rff.org/publications/explainers/agricultural-greenhouse-gas-emissions-101/
- Liu, Z., & Ansink, E. (2024). Price elasticities of meat, fish and plant-based meat substitutes: Evidence from store-level Dutch supermarket scanner data. Tinbergen Institute Discussion Papers.

 https://doi.org/TI%202024-046/VIII
- Maddela, N. R., Ezugwu, C. I., Sesan Abiodun Aransiola, Eller, W., Scalvenzi, L., & Meng, F. (2024). Microbial Biotechnology for Bioenergy. Elsevier.
- Mood, A., Lara, E., Boyland, N. K., & Brooke, P. (2023). Estimating global numbers of farmed fishes killed for food annually from 1990 to 2019.

 Animal Welfare, 32. https://doi.org/10.1017/awf.2023.4
- Mylan, J., Andrews, J., & Maye, D. (2023). The big business of sustainable food production and consumption: Exploring the transition to alternative

- proteins. Proceedings of the National Academy of Sciences of the United States of America, 120(47). https://doi.org/10.1073/pnas.2207782120
- Neuhofer, Z. T., & Lusk, J. L. (2022). Most plant-based meat alternative buyers also buy meat: an analysis of household demographics, habit formation, and buying behavior among meat alternative buyers. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-16996-5
- Nielsen, B. L., Dybkjær, L., & Herskin, M. S. (2010). Road transport of farm animals: effects of journey duration on animal welfare. Animal, 5(03), 415–427. https://doi.org/10.1017/s1751731110001989
- NREL. (2025). Documenting a Decade of Cost Declines for PV Systems | NREL.

 Nrel.gov.
 - https://www.nrel.gov/news/detail/program/2021/documenting-a-decade-of-cost-declines-for-pv-systems?
- Ogundele, O. D. et al. (2024). Chapter 16 Biotechnology for renewable fuel and chemicals. https://doi.org/10.1016/B978-0-443-14112-6.00016-X
- Oxford Economics. (2021). The Socio-Economic Impact of Cultivated Meat.

 https://www.oxfordeconomics.com/wp-content/uploads/2024/05/20210929
 _The_socio-economic_impact_of_cultivated_meat_in_the_UK.pdf
- Peacock, J. (2023, August 15). Price-, taste-, and convenience-competitive plant-based meat would not currently replace meat. Rethink Priorities.

 https://rethinkpriorities.org/research-area/price-taste-and-convenience-competitive-plant-based-meat-would-not-currently-replace-meat/
- Poore, J., & Nemecek, T. (2018). Reducing Food's Environmental Impacts through Producers and Consumers. Science, 360(6392), 987–992.

https://doi.org/10.1126/science.aag0216

- Ritchie, H., Roser, M., & Rosado, P. (2022). Environmental Impacts of Food

 Production. Our World in Data; Our World in Data.

 https://ourworldindata.org/environmental-impacts-of-food
- Ritchie, H., Rosado, P., & Roser, M. (2023a). Animal Welfare. Our World in Data. https://ourworldindata.org/animal-welfare
- Ritchie, H., Rosado, P., & Roser, M. (2023b). Meat and Dairy Production. Our World in Data. https://ourworldindata.org/meat-production
- Sentience Institute. (2019, April 11). US Factory Farming Estimates. Sentience Institute. https://www.sentienceinstitute.org/us-factory-farming-estimates
- Siegrist, A., Green, A., Michel, F., & Mathys, A. (2024). Comparing the nutritional value and prices of meat and milk substitutes with their animal-based benchmarks across six European countries. Food Research International, 197, 115213.
 - https://doi.org/10.1016/j.foodres.2024.115213
- Slade, P. (2023). Does plant-based milk reduce sales of dairy milk? Evidence from the almond milk craze. Agricultural and Resource Economics

 Review, 52(1), 1–20. https://doi.org/10.1017/age.2022.22
- SWP. (2022). Shrimp Welfare Report. ShrimpWelfareProject.

 https://www.shrimpwelfareproject.org/shrimp-welfare-report
- Szenderák, J., Fróna, D., & Rákos, M. (2022). Consumer Acceptance of
 Plant-Based Meat Substitutes: A Narrative Review. Foods, 11(9), 1274.
 https://doi.org/10.3390/foods11091274
- Tenniswood, K. (2023, October 2). How Many Fishes Are Slaughtered

Annually? Faunalytics.

https://faunalytics.org/number-of-farmed-fish-slaughtered-yearly/

- Tonsor, G., Lusk, J. & Schroeder, T. (2021). Impacts of New Plant-Based Protein
 Alternatives on U.S. Beef Demand Full Project Report Prepared for the
 Cattlemen's Beef Promotion and Research Board (CBB).

 https://www.agmanager.info/sites/default/files/pdf/PlantBasedProteinAlternatives_FullReport.pdf
- Trewern, J., Chenoweth, J., Christie, I., & Halevy, S. (2022). Does Promoting plant-based Products in Veganuary Lead to Increased sales, and a Reduction in Meat sales? a Natural Experiment in a Supermarket Setting. Public Health Nutrition, 25(11), 3204–3214.

 https://doi.org/10.1017/s1368980022001914
- Tubb, C., & Seba, T. (2021). Rethinking Food and Agriculture 2020-2030: The Second Domestication of Plants and Animals, the Disruption of the Cow, and the Collapse of Industrial Livestock Farming. Industrial Biotechnology, 17(2). https://doi.org/10.1089/ind.2021.29240.ctu
- van Marle-Köster, E., & Visser, C. (2021). Unintended consequences of selection for increased production on the health and welfare of livestock.

 Archives Animal Breeding, 64(1), 177–185.

https://doi.org/10.5194/aab-64-177-2021

- Wang, Y.-L., Lee, C.-H., & Ko, P.-S. (2020). Do Loan Guarantees Alleviate

 Credit Rationing and Improve Economic Welfare? Sustainability, 12(9),

 3922. https://doi.org/10.3390/su12093922
- Welfare Footprint Project. (2021). Transition to cage-free systems Welfare

Footprint Institute. Welfarefootprint.org.

https://welfarefootprint.org/laying-hens/

Zhang, T., Nickerson, R., Zhang, W., Peng, X., Shang, Y., Zhou, Y., Luo, Q., Wen, G., & Cheng, Z. (2024). The impacts of animal agriculture on one health—Bacterial zoonosis, antimicrobial resistance, and beyond. One Health, 18, 100748–100748. https://doi.org/10.1016/j.onehlt.2024.100748